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THE PROBLEM OF THE BURNING OF AN ELECTRIC ARC IN A STREAM
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A one-dimensional heat-conduction equation is analyzed for the
positive column of an arc discharge in a lateral gas flow (V4 J). Two
discharge burning regimes are found for the same parameters (E and
V). The critical gas flow rate at which disruption of the burning
occurs is determined. The velt-ampere characteristics of the dis-
charge are constructed.

In connection with the development of new bran-
ches of engineering (electric-arc heaters, engines,
motors, ete. ) the attention of researchers is drawn
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Fig. 1. Temperature distribution in flow
direction for various gas velocities. 1)
o= omaxs ) o =qa; ) o = a (a1 > a).

to problems involving the burning of an electric arc
in a gas stream [1, 2]. Particular interest is exhi-
bited in the case of lateral streamlining of an arc
(VL1]).

The problem of the burning of an electric arc is
examined in [1] on the basis of the equation of ener-
gy balance, with consideration of the strong nonlinear
dependence on the temperature of Joule heating. An
attempt is made here to clarify the spatial distribu-
tion (in a one-dimensional approximation) of temper-
ature and thus to find the volt-ampere characteristic
of the arc for various values of gas-flow velocity and
temperature, As in [1], here we will examine the fol-
lowing region of temperature and velocity values: V,
up to 100 m/sec; T, = 300-3000° K,

The processes occurring at the electrodes (heat
transfer, material vaporization, disruption of quasi
neutrality) are of great significance for arc discharge.
However, for long arcs with great current strength
the effect of electrode processes on the volt-ampere
characteristies is small [3]. As in [1], it is therefore
also of interest to ascertain the effect of the flow on
the characteristics of the positive arc-discharge
column,

It is well known from experimental work [1, 2] that
with spatially bounded electrodes in the case of lateral
streamlining the arc begins to bend and the discharge
combustion pattern becomes substantially different
from one-dimensional. However, as before, the cen-

tral portion of the bend may be treated as one~-dimen-
sional. Moreover, streamlining is possihle in the
presence of a stabilizing magnetic field, which also
makes possible the one-dimensional approximation
of arc burning without consideration of boundary effects.
The energy balance for the positive column of a
free-burning electric arc in a gas stream for the
steady case can be written as follows:

o E* 4 div(xgrad T) —pc¢,(V-grad T) = 0. (1)

In the solution of the problem we will treat the
quantities %, Cp» and pV as constant and given, The
constancy of pV requires no justification since it is
a consequence of the law of the conservation of mass.

The constancy of » and ¢ is an approximation
which is valid because the effect of a supply of heat
is examined in the problem for the electrical con-
ductivity (o) as a function of temperature according
to the law 0 ® exp(—e@j/2kT), And since » and cp are
considerably weaker functions of T than the function
o = A(T), we can expect that consideration of their
temperature relationship will introduce no significant
variations in the distribution T = T(x). The qualita-
tive picture is apparently preserved, although there
may be quantitative variations, In that case, for the
one-dimensional case (V = Vi = V) we obtain

o Vet o oE 2
% %
or
2
T7—aT = — oF , (3)
%
where
a= _cin_ = const. (3a)
%

The field E for the positive column may be re-
garded as homogeneous, and in the one-dimensional
case, neglecting the boundary effects, as independent
of the coordinates x within the limits of electrode
length.

The field E can consequently be written as

__ [0 when x<x, and x™ X, ()
E when x, < x < 5.
Thus, if the initial gas-flow temperature is
assumed to be equal to Ty, the problem reducces to
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the solution of the nonlinear equation (3) for the fol-
lowing condition:

Tlhaow T, (3)

We will divide the entire region of variation in x
into three intervals:

I I I
— 0 < X< X Yo K x < Xy, Xy < x L 4 oo,

In the first and third intervals E = 0 and (3) be-
comes a linear equation with constant coefficients.
The solution of (3) in these intervals can be repre-
sented in the following form:

Ty{x)=Crexpax 4+ C; (—oo; 1),
Ty(x) =Ciexpax + Cq (x; + ). (6)

The constant Cs; must be set equal to 0, since o >
> 0. In the interval x; = x = xy Eq. (3) is nonlinear
because of the function o(T)., With simple transforma-
tions it can be reduced to an integral equation of the
form

Ty(x) =C, 4 Cyexpax—
X
Lt

o Eflexpa(x — 1) — 11dt. (7)

(%
Xo

To determine the constants we will use the con-
dition (5) and the condition of joining the solutions at
the points x; and xy:

dT: dT, |
T X, =T Xo)s kel 2 -2 s
1( o) 2( o) dx - dx =0
dT, | dT.
To(w) =Ta(n), —2| =-S2 (8)
dx lx=x, dx x=x1

Proceeding from the formulas of (8), we derive the
following expressions for the constants:

Xy

Co=C=T; =C3=~1— o Eexp(—ai)dt,

ax
Xo
CG=TO+E’%‘:—"’j oE?exp(—af)df —
-—ij‘ o E*expa(x —1)— 1]dt. (9)
ax

Xp

Consequently, for the entire flow region (—; +«) the
expression

T(x)=T,+
l Ky x
+~—y cErexpa(x —f)df — —— chﬁdt (10)
ax ax

turns (3) into an identity.
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We see from (10) that in the region x < x; tem-
perature increases exponentially while in the region
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Fig. 2. Volt-ampere characteris-
tics of discharge for various gas
velocities. I) E = Egisruptions 1D
Vi T) Vo3 IV) V3 (V< Vo < V3

Xy = X = Xy the rise in temperature is retarded, since
for x = x{, grad T = 0 at the boundary. In the region
X = x; the temperature becomes constant, which fol-
lows directly from the formulation of the problem (we
neglect heat removal).

Strictly speaking, (10) yields no solution for (3),
but represents an integral equation for the function
T(x). In the general case it can be solved by the
method of successive approximations,

We know that the electrical conductivity of an
ionized gas is a function of temperature primarily
according to the law

o~exp(--;kq;’; } (11)

Hence we can see that up to some temperature,
T hint will be a very small quantity, while for large
temperatures it will tend toward a constant value (to
a completely ionized gas).

Therefore, just as in (4), an acceptable assump-
tion will be the representation of the temperature
function in the form of a step function:

6=0, when T < Tuyjn,

o =0, when T > Tyin (12)

Since we assume that the free stream is not ion-
ized, a natural limitation for T;, will be Ty < Tyyip.
For this approximation a single solution is obvious:
T = T, for all x. The remaining two solutions are
derived from an examination of the two possible ca-
ses in which

Xmin << xo, (133.)

Xo < Xmin < X1y (13b)

where x,ip is defined by the condition T(xmin) =Tmin
Let us examine the conditions for the existence of

solutions for both cases, Having used (10) and (12),

we find the expressions for xmin:
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Tmin — 2
Xmin = — In ( 0)(1 * — (143.)
a 0o B2 [exp (— a X,) —exp(—a x,)]
N L 2,
Xmin = X3 + i In [1 — ﬂ!‘*fzow—] . (14b)
a c, E*

In examining (13) and (14) we found that for both
cases the condition for the existence of a solution is
defined by the inequality

Tmin . 2
ATie =T @™ 1 expagr—x).  (15)
o, E?

Formula (15) demonstrates that for a given electrode
width (I = x; -~ x¢) at any flow rate there exists a
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Fig. 3. Graphical solution of Eq. (25).

D) FIT(xy)];5 I oy [T(x4) — Tyl; TI)

a2 [T(xq) = Tol; IV) a3 [T(x1) — Tol (o1 >
> ap > a3).

minimum value for the electric field Eyyip =
= Edisruption below which the arc will not burn. Con-

versely, for any field value there exists a maximum
flow-rate value Vmax = Vdisruption. beginning from
which the discharge is extinguished (absence of solu-
tion). The value of the parameters at which disrup-
tion of burning takes place can be derived from (15).
We will present the formulas for T(x) in the region
of existence (x; = x = x) for the electric field, these
formulas having been derived on substitution of (12)
into (10):

EZ
e[l expa (s —x)] +

Tx) =T+

2
L OB (x— %)), (162)
ax

o, E? " \*o<x< Xy

T(x)=T,+

aly

X €Xpa X [exp (— @ Xmin) —€Xp(— ax])J

o ( . (16Db)

T(x) =T, + 22
A%

[l —expa(x—xl)}—!—

o, E?
—= (X — Xmin)
%

+

Xmin <X¥<xy

The behavior of the functions derived from these for-
mulas is shown in Fig. 1. We see that for the identi-
cal value of the parameters E and ¢ there are two

solutions: one solution when the temperature Ty jp is
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attained outside the region of the field, and the other,
when it is attained within the limits of the field.

We see from Fig. 1 that for solutions correspond-
ing to (13a) and (15), the temperature drops through-
out the entire space ag the [low rate (or «) increases.
However, with (13b) the process is the opposite. On
attaining the flow rate transforming (15) into an
equality, both solutions coincide. This corresponds
to the situation in which hoth curves merge and intcr-
sect the left-hand boundary of the field at the tem-
perature T = Tmin (I. €., Xmin = Xg). The solution
for this case corresponds to the disruption of the dis-
charge burning in the flow, because at great flow
rates the temperature of the gas is transformed into
an identical constant T = T over the entire space.
Thus, for the identical values of E and « there exist
two different temperature curves. This leads to a
situation in which, for fixed E and V, there will exist
two stream values.

Let us construct the volt-ampere characteristics
of the discharge for a fixed value of the flow rate
(o = const), The total current is equal to

[ =1jdS (17)

for the one-dimensional case and for an electrode of
unit width across the flow

Iz‘yjdx u{'cde:GOEu('dx. (18)

The last integral is taken with respect to the region in
which oE is different from 0. Then for (13a)

I = 6y E (x, — %), (19a)
and for (13b)
I = 6, E (X; — Xuin)- (19b)

Having substituted the expression for xpy iy from
(14b) into (19b) we obtain

]=——G£1n[l——
a

(Tonin —Ty) 0l 1 . (20

o, E?

From (19a) and (20) it is possible to construct the
volt-ampere characteristics, considering that E
varies from E = Eqijsyyption to E = = (see Fig. 2).
It is easy to see that (19a) corresponds to a growing
characteristic. However, (20) yields a dropping
characteristic which is easy to prove by taking the
derivative (81/0E)y=const- For large E the curvent
from (20) approaches zero according to the law

[ Tmin —To) 0% (21)
E

The volt-ampere characteristics for large values of
the flow rate are situated higher, with the growing
portions merging into a single line (19a). This is a
result of the fact that we approximated the function
o(T) = const when T > Tyyin.

We now note the relationship between the solution
of (3) with the results derived in [1].
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We integrate (3) over the entire space (—; +x)

+wo
j T —aT)dx.< N :-—E—
% %

+o

X o dx. (22)
The left-hand part is equal to (the boundary condi-
tions having been used)

+
[ (" —aT)de =T"(00) ~T'(— ) —a T (o) +

—-te

+al(—o)=—aT(x)—T,l. (23)

The integrand in the right-hand part of (22) is dif-
ferent from zero in the region in which T = Tmin-
Having used (14a) and (14b) we can present the
integral in the right-hand part of (22) in the form
N .
— = T (24)

%

Having equated (23) and {24), we derive the equa-
tion for the energy balance in integral form

@ [T(x) —T,| = F [T (). (25)

Equation (25) is analogous to the equation used in
{1]. The left-hand part of (24) represents (correct to
the factor 1/n) convective removal of energy from the
arc per unit time and the right-hand part is the con-
tributed electrical power.
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Figure 3 shows the form of the function /[T(x;)].
The intersection points of the curve /[T(x,)] with the
straight lines «[T(x;} — Ty| yield the values of the
finite gas temperature,

As in [1], three possible states have been obtained,
However, it should be noted that the form of the func-
tion f can be derived only after solution of the dif-
ferential equation (3).

NOTATION

Here T is the gas temperature; Ty is the initial gas
temperature; Tpyin is the gas temperature at which
electrical conductivity is not zero; E is the electrical
field voltage; V is the gas velocity; p is the gas den-
sity; cp is the specific heat of the gas;  is the ther-
mal conductivity; o is the electrical conductivity; N is
the electrical power; ¢j is the ionization potential; e
is the electron charge; I is the electric current; j is
the electric current density.
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